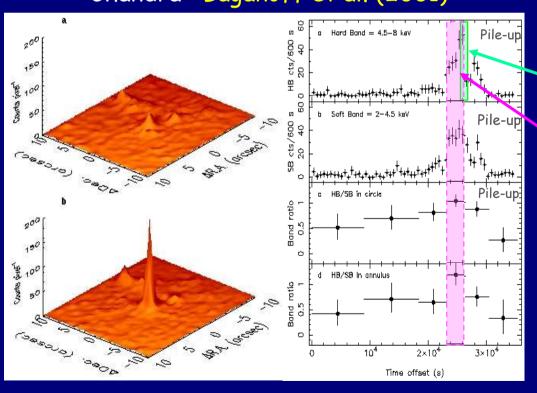

X-ray activity from SgrA*

Delphine Porquet & Nicolas Grosso

Observatoire Astronomique de Strasbourg

I. Our current knowledge of Sgr A* and its X-ray activity.

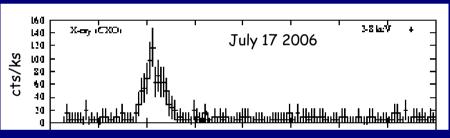
- First detected as a non-thermal radio source (Balick & Brown 1974)
 with a proper motion of 15±11 km/s (Reid et al. 1999)
- Closest supermassive black hole (D ~ 8 kpc) $M_{BH} \sim 3-4 \times 10^6$ solar masses (e.g., Ghez et al. 2003, Schödel et al. 2003)
- Bolometric luminosity: $L_{bol} \sim 10^{36}$ erg.s⁻¹ $\sim x 100$ L.! 10^{-8} - 10^{-9} times weaker than the Eddington luminosity (L_{Edd} = 1.26 \times 10^{38} M/M. \sim 4-5 \times 10^{44} erg/s)
- Chandra: X-ray luminosity: ~ 2.4×10^{33} erg s⁻¹ (Baganoff et al. 2003) « Active Galactic Nuclei ($\geq 10^{42}$ erg s⁻¹)
- Extremely low radiative efficiency?
- ⇒ Low accretion rate ? (extremely low density? Dynamically ejected prior to accretion?)
- Anisotropy and/or strong absorption of the emission ?


SgrA*: X-ray flaring activity

October 2000:

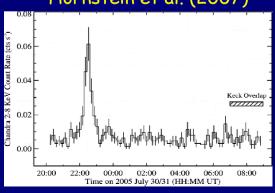
First detection of a (X-ray) flare from SgrA* new perspectives for the understanding of the processes at work in the Galactic nucleus

Chandra: Baganoff et al. (2001)

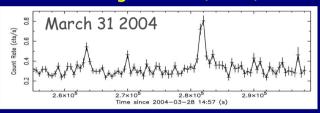

- Sgr A* flared by a factor 45 during about 3 hours
- The shortest time scale is 600 sec → 20 R_s.
- The spectrum at the peak hardens: Γ= 1.3 (+0.5,-0.6)
 Note: Γ(quiescent) ~ 2.5-3.0
- ⇒ X-rays come from near the black hole.

Chandra and XMM-Newton:

Observations of a several weak (amplitude < 20) to moderate (up to an amplitude of 50) X-ray flares (e.g., Baganoff et al. 2001; Baganoff 2003; Belanger et al. 2005; Eckart et al. 2004, 2006, 2008; Hornstein et al. 2007; Marrone et al. 2008; Porquet et al. 2008)

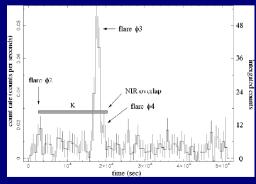

<Frequency>: 0.6 - 1 flare per day (1-5% of the observing time) but could be higher.
Duration: $\sim 5 \text{ min} - 2 \text{ hours}$

Marrone et al. (2008)

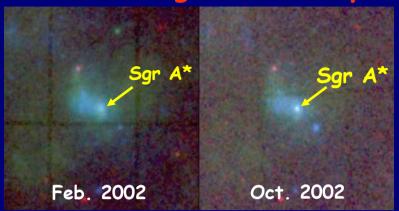


Lx = 40×10^{33} erg/s Amplitude ~ 20

Hornstein et al. (2007)



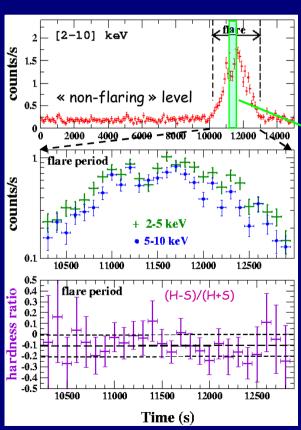
Bélanger et al. (2005)


 $L_x \sim 9 \times 10^{34}$ ergs/s peak/quiescent ~ 40

Eckart et al. (2006)

L_{2-8keV} ~33 x 10³³ erg/s Amplitude ~ 15

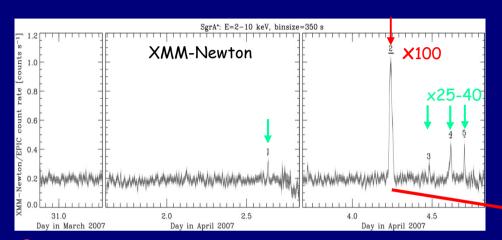
The brightest X-ray flare from Sgr A* (XMM-Newton)



Porquet et al. (2003)

October 3, 2002:

- duration: less than 1 hour (~46 min)
- amplitude: ~ 160 (flare peak / quiescent level)
 (~ x 3.5 October 2000, Chandra)

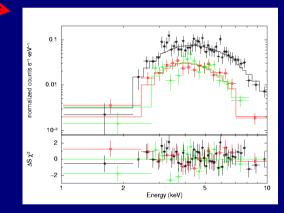


Peak Luminosity (2-10keV)= 3.6×10^{35} erg.s⁻¹

- ≈ Bolometric luminosity of the quiescent state
- almost symmetrical light curve
- * shortest time-scale: 200 s (3 σ) \rightarrow 7 R_s (R_s ~ 8 × 10¹¹ cm): very small region!
- similar soft (2-5 keV) and hard (5-10 keV) light curves.
- no significant spectral variability between the rising and decreasing phases.
- Γ = 2.5 ±0.3 for the whole flare (90% conf. level)

X-ray hiccups from SgrA* on April 4th 2007 Porquet et al. (2008)

4 flares detected within 12 hours with different amplitudes!

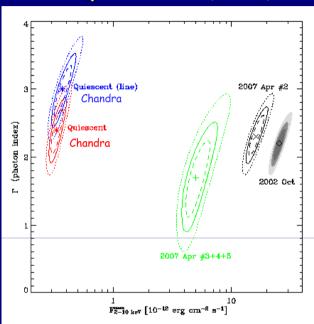

Detection of the second brightest X-ray flare from SgrA* followed by 3 moderate X-ray flares.

Bright flare (the second brightest X-ray flare from SgrA):

- <u>Duration</u>: ~ 2.9 ks ~ 48 min (≅ brightest flare, i.e ~2800s)
- Power-law fit taking into account dust scattering (A_V =25):

$$N_{H}$$
= 12.3 (+2.1,-1.8) × 10²² cm⁻² and Γ = 2.3 ± 0.3

• L_{peak} (2-10 keV) ~ 2.5 x 10³⁵ erg/s \rightarrow Amplitude: ~ 100



Following 3 moderate X-ray flares:

- <u>Durations</u>: 0.3-1.3 ks (~5-21 min)
- Fit (sum of the 3 moderate flares): N_H = 8.8 (+4.4,-3.2) × 10²² cm⁻² and Γ = 1.7 (+0.7,-0.6)
- L_{peak} (2-10keV) ~ 6-9 x 10³⁴ erg/s \rightarrow Amplitude: ~25-40

Confidence regions of the spectral parameters

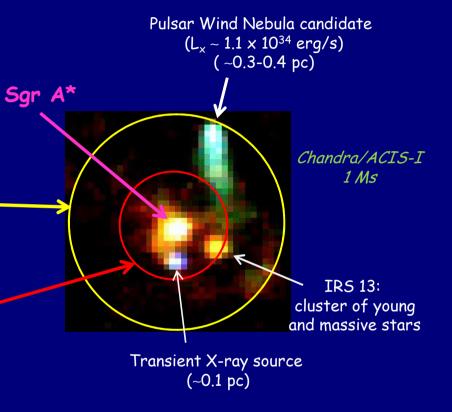
Porquet et al. (2008)

 \Rightarrow the two brightest flares have well constrained soft X-ray spectra $\Gamma \sim 2.2-2.3$ (±0.3)

⇒ 2 types of X-ray flares? weak moderate/hard and bright/soft? If yes, two different physical processes?

II. IXO era

Angular resolution and extraction regions

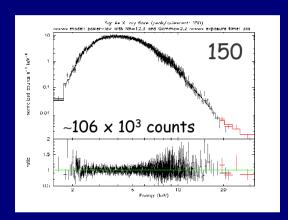

XMM-Newton: R = 10" -

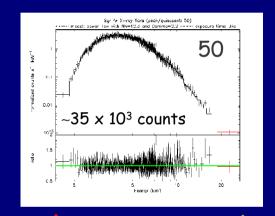
The "non flaring level" for R=10 "

= 90% (diffuse emission + other point sources)

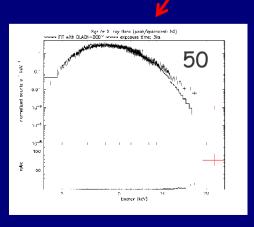
+ 10% Sgr A* quiescent level.

IXO extraction region of R=5'

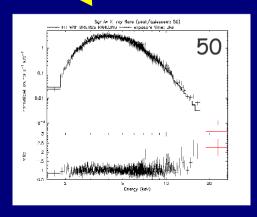



Importance of the spatial resolution to decrease the contamination by other X-ray sources during the non-flaring time interval and to detect weak flares from SgrA*.

Sensitivity and energy coverage


IXO simulations: WFI + HXI

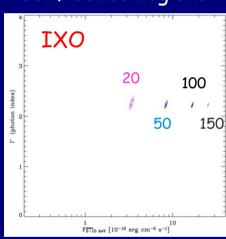
- XEUS_IrC_ML_WFI.rsp, XEUS_IrC_ML_CdTe.rsp
- Power-law model: N_H = 12.3 x 10²² cm⁻² and Γ =2.2 (fit parameters of the brightest flare) For amplitude (flare peak to quiescent level)= 150, 100, 50, and 20
- Exposure time ~ 3ks (~50 min)

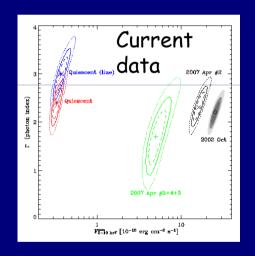


Discrimination between models ⇒ physical process

FIT with BB

FIT with brems

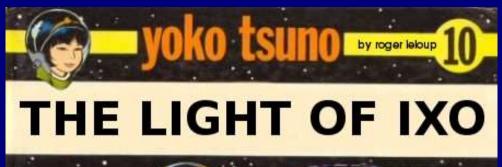



Sensitivity and energy coverage (II)

IXO simulations: WFI + HXI

- XEUS_IrC_ML_WFI.rsp, XEUS_IrC_ML_CdTe.rsp
- Power-law model: $N_H = 12.3 \times 10^{22}$ cm⁻² and $\Gamma = 2.2$ (fit parameters of the brightest flare)
- For amplitude (flare peak to quiescent level)= 150, 100, 50, and 20
- Exposure time ~ 3ks (~50 min)

Confidence regions



We will be able to strongly constrain the whole flare spectral properties, as well as time-resolved spectroscopy during flares.

Requirements for SgrA*

- 1. Good angular resolution: ≤ 5 " to detect weak to bright flares
- 2. High sensitivity for time-resolved spectroscopy
- 3. Energy coverage: WFI + HXI to discriminate between emission models
- +4. Wide FOV for the study of serendipitously observed transient X-ray binaries

Thank you for your attention

